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NON-LINEAR DIFFUSION
IITI. DIFFUSION THROUGH ISOTROPIC HIGHLY ELASTIC SOLIDS

By J. E. ADKINS
Department of Theoretical Mechanics, University of Nottingham

(Communicated by A. E. Green, F.R.S.—Received 8 August 1963)
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A theory is formulated for the diffusion of fluids through highly elastic materials. This forms an
extension of earlier work (Adkins 19634, 4) on flows of mixtures of fluids, but attention is here
confined to the diffusion of a single fluid through the solid. It is assumed that each point of the
region of space concerned may be occupied simultaneously by the fluid and solid, and the motion
of each constituent is governed by the usual equations of motion and continuity. The mechanical
properties of each substance are specified by means of constitutive equations for the stresses, and dif-
fusion effects by means of a body force or diffusive drag acting on each component, this force being
a function of the composition and relative motions of the constituents of the solid-fluid mixture.
In applications, attention is confined to steady-state problems. These include the swelling of a
solid due to presence of fluid, and the diffusion of a fluid through uniform plane plates or slabs
subject to uniform all-round compression or extension and to a shearing deformation. Itis assumed

throughout that the diffusing fluid is non-Newtonian, the theory for ideal and viscous fluids

p— g g

< . emerging as special cases.

5 ~ 1. INTRODUCTION

= In earlier papers (Adkins 19634, b) a non-linear theory for the diffusion and flows of mix-
e tures of fluids has been formulated, based on an approach suggested by Truesdell & Toupin
T O PP g8 y P
~ (1960), who give a general discussion of the problem with extensive references. This

approach, which was subsequently examined with special reference to linear theories by
Truesdell (1961, 1962) avoids some of the fundamental difficulties of the classical theory
based upon Fick’s law. Accounts of the classical theory with applications are given by
Crank (1956), Bird, Stewart & Lightfoot (1960) and others.

In the present work, the non-linear theory is extended to deal with the diffusion of fluids
through highly elastic, isotropic solids. This problem arises in many important applications
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302 J. E. ADKINS

such as the swelling of rubber by solvents, the absorption of oils by plastics and of water by
fibres and the seepage of water and other fluids through porous media. The latter problem
has been examined by Biot (19564, 4).

The assumptions are similar to those of the earlier work. Each point of the solid-fluid
mixture is assumed to be occupied simultaneously by all constituents in given proportions.
Mechanical and kinematic quantities such as density, a stress tensor and body-force vector,
and velocity and acceleration vectors are defined for each constituent, and equations of
motion and of continuity are formulated for each substance using these quantities.

To simplify the theory attention is confined to the situation where a single non-New-
tonian fluid is diffusing through an ideally elastic solid. An extension to deal with a mixture
of fluids and with more general materials presents no difficulty of principle. During the
diffusion process it is assumed that the stresses for a given substance describe its internal
properties. The stress components for the solid & then depend upon the density and the
deformation gradients defined for & ; the stresses for the fluid % depend upon the density
and the velocity gradients defined for &. More general assumptions in which terms are
included describing interactions between materials have been made in some of the earlier
work (Adkins 1963 b), and a briefindication of some of the generalizations possible to include
interactions is given here.

The effect of diffusion is taken into account by means of a body force acting on each
constituent. This diffusive force depends upon the nature of the mixture and the relative
motion of its constituents. In the present instance we suppose that the diffusive force acting
on the fluid (which is balanced by that acting on the solid) depends upon the densities of
solid and fluid, the velocity of the fluid relative to the solid, and the state of deformation of
the solid. Since velocity gradients occur in the constitutive equation for the fluid we assume
that these may also affect the diffusive force. The constitutive equations are restricted by
invariance considerations.

The theory is applied to examine some steady-state problems, including the swelling of a
solid by absorption of fluid, diffusion through a uniformly stretched plate and diffusion
through a sheared slab. In these latter cases the deformation becomes non-uniform as a
result of the diffusion process and when diffusion takes place through a sheared solid
without a centre of symmetry a shearing deformation and flow may be produced normal to
the plane of the initial shear.

2. NOTATION AND FORMULAE

We consider a highly elastic solid & which is undergoing a continuous deformation,
and suppose that the region # occupied by the solid is also permeated by a fluid #, which is
in motion relative to %. Each point of £ is therefore occupied simultaneously by the solid
&, and the fluid ¥, these proportions varying, in general with time and with position in £.

The motion is referred to a fixed system of rectangular Cartesian co-ordinates X;.
At some initial time ¢ = 0, we suppose that the solid and fluid are both at rest, that the solid
&, is undeformed and that the region occupied by it does not contain any of the fluid 4.
At subsequent time ¢ (> 0) the fluid has diffused into the solid, which is deformed by its
action and by extraneous body and surface forces. Particles of the substances ¥, %
which are at the point y; at the current time ¢ were at X;, ¥}, respectively, at the initial time
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¢t = 0. The velocities of ¥, &, at y, at time ¢ are u, v with components «,, v;, respectively.
The motions of ¥, %, are therefore defined by

WDy, )
Y =YXy t), u;= —D]%gl (solid ¥),

‘ @Dy, .
h=uTpd), v=-p (fuid %),

where ®D/D¢, @D /Dt denote differentiation with respect to ¢ holding the co-ordinates X,

Y, constant, respectively.

The operators WD /D¢, @D/D¢ are given by

WD 9 Jd @D 4 J
Dt Uy, Di o may,

(2:1)

(2-2)

where 0/0¢ denotes differentiation with respect to ¢ holding the co-ordinates y; constant and
here and subsequently, summation is carried out over repeated indices unless otherwise
indicated. When operating on any quantity ¢ = ¢(¢) which is independent of position

WD /Dt = @D/Dt = d/dt.

The densities of ¥, <, at the point y; at time ¢ are denoted by p,, p, respectively; the initial
density of the solid ] in the unstressed and unstrained state at time ¢ = 0 is denoted by p,.
In the absence of chemical reactions between ¥, %, we have the equations of continuity

dpy 0 _ dpy, 0 _ .
”374“5?{(/71”:') =0, W_I_(?yi (p2v;) = 0, (2-3)

or alternatively, for the solid % I3 = Po_| 9;
P10y
In (2-4), I; is the third strain invariant (see, for example, Green & Adkins 1960); if &
remains incompressible throughout the deformation and the diffusion process, ,/I; = 1.
For each constituent &, % of the solid-fluid mixture we postulate that there exists at the
point y; a partial stress tensor e, with components ¢{ (« = 1, 2) and extraneous and diffusive
body forces F,, ¥, per unit mass with components F{®, W, respectively, referred to the
X;-axes. For each substance %, we may then formulate equations of motion

30’57%) (o) (o)) — (a)DUEﬂ)
”@:Jrﬂa(f’} +¥i) = p, Di

. (2-4)

(@ =1,2; t§P = u;, v'® = v;; « not summed). (2-5)

In subsequent work we shall restrict attention to the case in which extraneous body forces
are absent. The diffusive forces ¥, arise from interactions between the solid and fluid and
we may therefore write

P +p¥ =0, (¥ =W,%"=1Y). (2-6)
In these circumstances, the equations (2-5) yield
daip ~ (Ou, du;
M“pzlpi = Pl(”gz umaym)?
ofp o, oy 7)
3y, +p ;= Pz(ﬁ‘l“vmm) .

37-2
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304 J. E. ADKINS

3. STRESSES AND DIFFUSIVE FORCES: PHYSICAL ASSUMPTIONS

The system of equations (2-3), (2-4) and (2-7) is completed by the introduction of con-
stitutive equations for the stresses o}, o, and the diffusive force ¥.

A variety of assumptions is possible, the simplest being that the stresses in a given substance
describe internal mechanical properties which are not affected by the presence of other
materials, while the force ¥ accounts entirely for the effects of interactions arising from
diffusion. Assumptions of this kind, excluding interaction terms in the stresses have been
made in an earlier paper (Adkins 1963 @) in considering mixtures of fluids. Here, we confine
attention to the situation in which 4] is ideally elastic in the absence of &, while %, in the
absence of & is a non-Newtonian fluid. If interactions are excluded e, depends upon p,
and the displacement gradients dy,/0X}, while 6, depends upon p, and the velocity gradients

0vify;. Thus o) =0,(p1, 04:/0Xy), &5 = 04(py, 00,/0y ). (3:1)

The diffusive force ¥ may be regarded as a retarding effect exerted upon the motion of
the fluid <, due to the presence of the elastic solid. It is natural to suppose that it depends
upon the density of fluid p,, its velocity relative to &, and the nature of the medium through
which it is diffusing; this is described by the density p, and the displacement gradients
dy,;/0X,. Since the fluid stresses depend upon velocity gradients it is conceivable that these
should also enter into the expression for the diffusive force. These considerations lead to the

functional form
Wy . 0y; , Ou; v, .
- (p17p2> ana ayka 8?/k’ Uz)7 (3 2)

for ¥ where U, are the components of the relative velocity vector
U=v—-u. (3-3)

To examine invariance requirements for ¥ it is convenient to consider a scalar function

dy; . 0w Ov; ), (3-4)

H=p¥; = f([%';ﬂu/’z; IX. . By, U
which is linear and homogeneous in the components p, of an arbitrary vector p; (3-4),
together with the forms derived from it, is assumed to be single-valued and continuous in
p1> po and a polynomial in the remaining arguments. When the form of o has been deter-
mined, the diffusive force components are given uniquely by

W, = 0¢/dp,. (3-5)

In the present paper, attention will be concentrated on the implications of the simple
theory based upon (3-1) and (3-2). More generally, we may suppose that interaction terms
occur in the stresses; a simple hypothesis of this kind is expressed by the relations

dy; 0v;
c :Gl(plapzaa—‘%)a b :O-Z(Iolﬁp2>-a—é;)) (3'6)

in which the stresses each depend upon both densities p;, p,. Some support for interactions
of this type is provided by the results for swelling discussed in §7. In (3:6) we must have
o, = 0 when p, =0 and o, = 0 when p, = 0. A more general formulation in which the
stresses take forms comparable with the diffusive force (3-2) is developed elsewhere for


http://rsta.royalsocietypublishing.org/

0
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NON-LINEAR DIFFUSION. III 305

aeolotropic bodies (Adkins 1964); a somewhat different approach, in which elastic terms
are excluded from o, and the only additional terms appearing in ¢, and o, are those which
are excluded by invariance considerations from either constituent alone, is given by Green
& Adkins (1964). In both cases the analysis of the invariance problem is similar to that
given here for the diffusive force.

4. DIFFUSION THROUGH AN ISOTROPIC ELASTIC SOLID

The reduction of the expression (3-4) for #’to a form appropriate to an isotropic fluid dif-
fusing through an isotropic elastic solid follows the lines of the earlier work (1963 5). Here,
however, to simplify the appearance of the expressions derived, we use matrix notation and
define mechanical and kinematic matrices by the relations

— gl (+1)
A=l B=1Bals =[Gl

) J
4;, = 1(aul _6_&), By, = (ﬁvz + vk)

2\9y 9, 2\9yy.  9y;)° (4-2)
c. — 99 %
k90X 40X’
Ry = RPN, Ry = [IRPN, R = |yl
du; du dv, dv
Ril) _ ( _ﬁk), R§2) — _<__l~_j), 4-3
* o 2\y, oy, * 0y 0y; (43)
R, = R{P—RP.
Vectors with components X, ¥;, y; are denoted by X, Y, y respectively and M = ||M,,||
denotes the orthogonal matrix for which
MMT = MTM =1, (i) detM =1, (ii) (4-4)

I being the unit matrix and M7 the transpose of M.
If A, A, are two motions of the mixture differing only to the extent of an arbitrary
rigid body motion, and a given particle P is at y, ¥ respectively at time ¢ in these two

motions, then 7 — My, (4°5)

where M = M(#) is in general a function of time. A corresponding rigid body rotation of
the undeformed solid ¢ is defined by

. X = MX, (4°6)
M now being a constant matrix.
In the present notation, the arguments in (3-4) may be rearranged so that # takes the

form 3y,
H = c%ﬁ(p;pl}pZ; ﬁi)‘% B> R; U> RI) (47)

In (4:7) only the displacement gradients dy;/0.X, are affected by the rigid body rotation
defined by (4+6) of the undeformed solid 4 and it follows by the argument used in consider-
ing the strain energy function for elastic materials (Green & Adkins 1960) that if & has
(hemihedral) isotropy, dy,/0X, can enter into (47) only in the combinations C,, and
JIs, the polynomial character of # being preserved. Since ./I; = p,/p;, we may, without
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306 J. E. ADKINS

loss of generality exclude this argument provided ## can still be regarded as single valued
and continuous in p;.

If we now examine the behaviour of the arguments in 5 for the motions .#, -#, and
distinguish quantities appropriate to .#, by bars, we find that R, involves the angular
velocity of the superposed rigid body motion contained in .#, and for the remalmng

quantities we have | 0 — MO (Q=por U),
¥ = MyMT (y=4,B,Cor R).}
The elements of R, cannot therefore appear in #, which reduces to the form
H=H(P; p, P25 C, 4, B, R, U). (4-9)
Since # is independent of the rigid body motions specified by (4-4), (4:5), it is a hemi-
hedral isotropic function of the vectors p, U and the matrices C, 4, B, R.*

The invariants of an arbitrary system of vectors and second-order symmetric tensors
under transformations of the orthogonal group have been examined by Spencer & Rivlin
(1962, 1964). We denote by I; (A = 1,2, ..., A) the invariants of the integrity basis for the
vector U and the system of vectors and tensors C, 4, B,R; P, (x4 = 1,2, ..., N) denote the
corresponding invariants which are linear and homogeneous in p;. The expression (4-9)
for 2 may then be re-written as

(4-8)

H = ﬁPxﬂﬁﬂ’ (410)

where ¢, are polynomials in J, with coefﬁc1ents which are continuous single-valued func-
tions of p;, p,, and by making use of (3:5) we obtain

¥, = Eapzaﬁ | (4:11)

If ¥, is isotropic without a centre of symmetry (hemihedral) the invariants I, P, are
those appropriate to the proper orthogonal group of transformations defined by (4-4),
(4:5). If # and & have a centre of symmetry at each point (holohedral) & is form-
invariant also under the central inversion X; = — X, ;= —y;. The invariants I,, P, are
then those of the full orthogonal group specified by (4-4) (i) and (4-5) with det M = +1.

In the absence of interactions the stress components (3-1) become

o, = a [+, C+a3C%)
o, =B+ fB+5y B
where ¢, are polynomials in tr C, tr C* which depend also upon p, and f; are polynomials in
tr B, tr B?, tr B3 (or det B) which depend also upon p,. Here we have agssumed tr C® (or det C)
to be eliminated from «; by means of the relation
polpr = [det CTH. (413)

Forms similar to (4-12) may also be derived from (36), the only difference being that the

coefficients «;, §; are then functions of both densities p, p,.

# The functional form (4+9) is not, of course, the only one possible for . It follows from the earlier
work that the nine components of the tensors 4 and R or of B and R may be replaced by those of the unsym-
metrical tensor W with components P

W, =_-—t-—-—
i %Yy Oy

(412)

>

JF is again an isotropic function of its arguments.
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5. DIFFUSION THROUGH AN ISOTROPIC RIGID SOLID
If the solid & remains undeformed throughout the diffusion process we may take
Yi = My Xy +4,(t), (51)

where M;, = M, (f) and ¢,(¢) specify a rigid body rotation and translation respectively;
M., are thus the elements of an orthogonal matrix satisfying (4-4). From (5-1) and (2-1)

we have
. aMzk a¢z
e T
_ M, a9
Wk My~ )+, (52)
and hence, remembering (4-4),
Ou; _ 0M;, — R — .
(7y]“ T M =RP, A;=0. (5:3)
Also from (5-1), (4-2) and (4-4)
0y 0X, = M,, C=1I (5-4)
From these relations we see that for an isotropic rigid solid ] the function (4-9) may be
writen # = H(D; p1,p2; B, R, U). (5°5)

In this expression, U and R are calculated by using the forms (5-2) and (5-3) for u and R,,
respectively, and o is an isotropic function of the arguments indicated. The formulae
(4:10) and (4-11) continue to apply but invariants involving C and 4 are now absent from
the systems typified by I, P,.

If & is at rest we have M=1, 4=o0, U=V,}

R, =0, R=R,, |
H=H(D; p1,p25 B, Ry, V). (5°7)

This result for the diffusive force may be compared with that derived by a different method
in the earlier work (Adkins 1963 a).

(5-6)

and (5-5) reduces to

6. STEADY-STATE DIFFUSION THROUGH ISOTROPIC SOLID

The formula (4-11) for the diffusive force may be written out explicitly by using results
derived by Spencer & Rivlin (1962, 1964) for isotropic integrity bases; the stresses may be
treated similarly when interaction terms occur. The particular case of steady-state dif-
fusion is of some importance and is considered here. Owing to the interaction, due to
the form of the diffusive force, between the equations governing the deformation of %, and
those determining the flow of %, we may expect that, in general, a time-dependent deforma-
tion would lead to a non-steady flow and that the converse would also apply. We therefore
assume < to be in a state of static deformation and the equations of §§ 3 and 4 are simplified

by the relations u=0, U=v, A4=R, =0, R=R, (6:1)

If we use the symbols U and R rather than v and R, the results apply to time-dependent
deformations and non-steady flows provided that terms arising from non-zero values of 4
can be neglected.
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308 J. E. ADKINS

For simplicity, we confine attention to the case where the diffusive force is a linear
function of the components of U or v and their derivatives; for the same reason we assume
terms arising from the rate of strain components B;; to be absent from the expression for ¥*.
The results are appropriate to the practically important case where the diffusion velocity is
small, and the expressions for ¥ are then analogous to those given by Green & Adkins (1960)
for the heat flux vector in thermoelasticity. If we define the components V; of an axial vector
V by the relations
Vi=1dey Ry, Ry —

i i ik Vis (6-2)
where ¢;;;, are the components of the alternating tensor, the diffusive force, for a hemihedral

material <] is given by
IF:' = (%1&% + Wz Cz’k + lﬁs Cil Clk) Uk + (%4 82'1: + 3#5 Cz’k -+ ¢6 Cil Czk) Vk: (6'3)

where ¥, ¥, ..., ¥ are polynomials in tr C and tr C? with coefficients which are continuous
single-valued functions of p;, p,; we assume that tr C3 can be expressed in terms of tr C, tr (2
and p, by using (4-13), without introducing singularities. In the case of holohedral materials

S, 95, (6:3) reduces to
b ( ) le': (¢1aik+¢zcik+¢3cﬂcm) Uk,' (6'4)

7. SWELLING OF A SOLID BY ABSORPTION OF FLUID

The preceding theory may evidently be employed to examine static deformations of
a solid into which a fluid has been absorbed. This kind of problem arises in the swelling of
rubber and plastics by solvents and of fibres and wood by water and other fluids. In this

static case U—v-U=0, A—B—R—0, ¥—0, (7-1)
and the stresses (4-12) become
6 =a l+a,C+a;C? o,=pf1 (7-2)
The equations of motion for & yield
08,/0y; = 0 or f, = constant == k (say), (7-3)

and with these we must associate (4-13).

If no interactions are assumed in the expressions for the stresses, the coefficients «; may
be regarded as functions of p,, tr C'and tr C? while f, becomes a function only of p,. Equation
(7-3) would then imply that the fluid is uniformly distributed throughout & even when the
deformation of 4 is inhomogeneous. This difficulty does not arise when interaction terms
are included. For example, if we assume forms for the stresses based on (3:6) in which o;
and £, depend upon both p; and p,, equation (7-3) yields a relation between the densities
which may, in principle, be solved for p, in terms of p,. In view of (4:13), the equations of
equilibrium d¢{}’/dy, = 0 furnish, in general, three equations to determine the deformation
of &,. This is the kind of problem which arises in the theory of finite elasticity. When this
has been solved, p, and p, are given as functions of position by (4:13) and (7-3). A similar
procedure may be employed when more general interaction terms occur in the formulae
for e, and o,.

* These would give rise to additional terms in (6-3), (6-4) remaining unchanged.
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In the case of pure homogeneous deformation with principal directions parallel to the

X, h
; axes we have (Y1:Y2¥3) = (L X, 1, X5, 13.X5), }

L (7-4)
(Ciis Cap, Cgg) = (A}, 43,43), G =0 (i %),
where 4;, A,, 45 are constants. Equations (7-2) and (4-13) yield
oP = a;+a, A2 +asAt (¢ not summed), (7-5)
A A5 A5y = (7-6)

If the swollen body is a cube, with plane faces normal to the X; directions subject to uniform
pressures p; we have

oP+0P =a,+a,24a3Af+f, = —p; (i not summed). (7-7)

If the density p, and the pressures p; are prescribed, the relations (7-6) and (7-7) may be
regarded as four equations for the determination of A; and p,.
When the solid-fluid mixture is at rest under the action of no extraneous forces we may

take A=Ay = Ay = A (say), p— 0, (7:8)
and equations (7-6), (7-7) yield
Bpy = pg, o+ +azd*4-f) = 0. (7-9)

In this case we have two relations connecting A, p, and p,.
For simple extension in the X, direction we have

/12 = /13: —p = T (SaY)’ by =p35=0, (7'10)

and then from (7-6) and (7-7) N A2py = p
14201 = Pos

o +aAi+agdi+py = T, (7-11)
a;+a,Ad+asdf+p, = 0.

These may be regarded as three relations connecting A, A,, p; and p,.

The problem of swelling for rubber-like materials has been examined from a somewhat
different point of view by Treloar (1950, 1958). From thermodynamic and molecular
considerations he has derived an expression for the free energy of a swollen polymer in
terms of the deformation and the volume fraction of solid polymer present in the solid-fluid
mixture. From this there follows an expression for the total stress o, +o,. Treloar examines
various kinds of homogeneous deformation using this approach and concentrates on the
problem of equilibrium swelling in which the solid has absorbed the maximum amount of
fluid consistent with its molecular structure.

8. DIFFUSION THROUGH UNIFORMLY STRETCHED ISOTROPIC ELASTIC PLATE

The theory of § 6 is here employed to examine the steady-state diffusion of a fluid normally
through an isotropic elastic plate or slab under uniform all-round extension or compression.
The plate is bounded in the undeformed state by the plane faces X; = a,, X; = a, and the

deformation is defined by
Nn=AX), ¥2=4Xy y3=pXs (8:1)

38 Vor. 256. A,
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310 J. E. ADKINS
where g is a constant. The velocity components of the fluid at the point y; are given by
(01,09, 03) = (%, 0,0), (8-2)

where # is a function only of y; (or Xj).

In this and subsequent sections we restrict attention to the case where there are no
interaction terms in the stresses which then take the forms (4-12). The results of § 7 suggest
that this assumption may, in practice, need some modification, but even with the simplified
theory some interesting results emerge from the analysis. An extension to the more general
theory presents no difficulty of principle. From (4-2) and (8:1) we now have

Co=27 Cp=0Cy=p C;=0 (i+)), (83)
where, here and subsequently, a prime denotes differentiation with respect to X;. The strain
invariants are given by @ C = 2422, trC?— Vit (84)
and since det C = 1"%u* oA 12 = py. (8-5)

From (4-2) and (8-2)
By =u'[X, Byy = Bgz = By, = By3 = By =0 (8-6)
and hence trB=u'[N, trB?=u"2/2 trB3=u'3A"S. (8-7)

The stresses (4-12) take the forms

iy = @y +apd P ag A’ } (8-8)
oy = 05 = oyt tagut, ol =0 (1)),
0 = By +Pytd [N +pyu' 212, (59)
0R =0R =p, o =0 (i4)).

In (8-8) the coeflicients ¢; are polynomials in the invariants (8-4) and depend also upon p;.
In view of (8:5) we may regard ¢; as functions of 1’ and x and we shall assume that they
are continuous, single-valued functions of these arguments within the range considered;
the constant # will not be exhibited explicitly in the subsequent analysis. The coefficients
f; are polynomials in the invariants (8-7) which depend also upon p,; we shall assume that
they are continuous single-valued functions of «'/A" and p,.

From (6-2) and (8:2), V=0, (or R = 0) and the diffusive force components assume
identical forms for holohedral and hemihedral materials. From (8-2), (8:3) and (6-3) or

(6-4) we have Y =Yy, W,=W,=0, (8:10)
where Y=g+l 2 (8:11)

is a function of p;, p, and 1’2 that is, of p, and A'.
The equations of motion (2:7) reduce to

doiy/dy, —p, Yu = 0, }
do?/dy, +py Yu = pyu(du/dy,),

for the solid and fluid respectively, the remaining equations being satisfied identically.
The equation of continuity (2-3) yields

d(pyu)/dy, =0 or pyu=£k, (8-13)

(8-12)
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where £ is a constant. By adding (8-12) and making use of (8-13) we obtain
V40 = ku+k,, (8-14)
k, being a further constant of integration. The first of (8:12) and (8:14) may be written
do{P/d X, — kYA =0, }
A+ = Klpy-th

and in view of (8-8), (8-9) and (8-13) these may be regarded as two differential equations
for p, and A. When these have been solved, u and p, are given by (8:13) and (8-5),

(8-15)

respectively.

If, within the solid ¥, the fluid <, behaves as an ideal fluid so that the stress o, takes the
form oy = F(p,y) 1, (8-16)
where Fis a known function of p,*, then from the second of (8-15)

o = Kpy—F(p;) +hy. (8:17)

In the corresponding problem of diffusion through a rigid plate, the classical result
based upon Fick’s law is derived from the more general theory by making the assumptions
that £ is small, that F is linear in p, and that Y is constant (Adkins 19634). In the present
instance, if Y is constant, the first of (8:15) integrates to give

0{y = kYA + constant, (8-18)

and this may be regarded as a first-order differential equation for A which does not involve
X, explicitly. An expression for A in terms of p, is obtained from (8-17) and (8-18).

Returning to the general equations (8:8) to (8-15), it would appear natural to examine
the possibility of a solution in which the deformation and velocity field are almost uniform
throughout the plate. However, if we write

y, = A(X,) = /IOX1+671, u = uy+eu, }

_ _ (8-19)
p1=C1H€Py, Py =Cytepy (Ao, Uy, €y, ¢y CONStANt),

where ¢ (< 1) is a small real parameter which is independent of p,, p,, # and A and expand
(8-8) to (8-15) in powers of ¢, the terms independent of ¢ in the first of (8:15) can vanish only
if Y(cy, 4y) = 0. Since this implies a relationship between ¢, and 4, which it may not be
possible to satisfy for relevant values of these quantities, we shall not consider this case
further.

This difficulty does not arise if the velocity « is small and of order ¢. The assumption of
small velocity is made in obtaining the classical solution for diffusion through a rigid plate
and to a first approximation the density of the diffusing substance is a linear function of
position; a further approximation based upon this classical solution has been derived by
Adkins (1963 a). Guided by the solution for a rigid plate, in place of (8-:19) we write

u = euy-+e2i+0(e3), A =2A,X,+el+ 0(62),}
py=¢1+ep+0(6%), py = cy+epy+0(e?),

where u,, A, ¢;, ¢, are again constants and #, 4, 7,, p, are functions of X;.

(8-20

* In the more general case, when interactions occur F may be a function also of the invariants (8-4)
38-2
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Introducing (8-20) into (8-5) and (8-13) and equating separately to zero coeflicients of
corresponding powers of ¢ we obtain

A%y = po,  Cothy = Ko, (8-21)
APyt =0, Pyugtoti =k, (8-22)
ky and £ being constants such that ¢k, ¢2k = £.

If we replace £, by &, +¢£, in the second of (8:15) and assume that the functions a;, £, Y
can be expanded by Taylor’s theorem in ascending powers of ¢ the terms independent of ¢
yleld Loy + 1+ Ay + A as]o = £ (8-23)
Here and subsequently the symbol [ ], indicates that the quantities inside the square
brackets are evaluated at ¢ = 0. Terms independent of ¢ in the first of (8-15) vanish identi-
cally.

Similarly, from the terms linear in ¢ in the expansions of (8:15) we obtain

A" =, (8-24)
az"{_pr = ]Eb}
) 0051 8052 40063 5
where T A3 vt A} T 200y + 443 a3:IO,
) ﬁ (8-25)

3 o Ky = kodo[ Y],

are constants. From (8-24) we obtain
‘fl = %KlX%+’C2X1+K3,} (8-26)
bpy = kj—ky—rK, X
As in the classical theory for a rigid plate, the density p, is a linear function of position to
this order of approximation. Higher-order approximations may be derived by considering
the coeflicients of higher powers of ¢ in (8:20) and the subsequent equations. In this case,
however, terms non-linear in « if they exist, in the constitutive equations for 6, and ¥ would
need to be taken into account. The constants of integration are determined from the
boundary conditions at X; = a,, X| = a,. In view of (8:20), there is no loss of generality in
taking £, k, and k4 to be zero in (8:26).

9. STEADY FLOW THROUGH A SHEARED SLAB

Steady-state diffusion through a slab or plate of isotropic elastic material in shear may
be examined similarly. We again suppose the plate to be bounded by the planes X, = q,,
X, = a, and consider a steady-state deformation in which planes X; = constant are sheared
relative to each other in directions in the X,, X5 planes, together with a displacement along
their normal. The deformation may therefore be defined by

yy=H(X)), y,=2X,+K(X), y3=2X+L(X)), (9-1)
where H, K, L are functions of X;. We assume that during diffusion through the plate, the
fluid receives components of velocity in the X,, X; directions as a result of the deformation of
the solid. The velocity components v; at the point y; are then

(V1,095 v3) = (4,0, w), (9-2)
where u, v, w are functions only of y; (or X)).
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Again denoting differentiation with respect to X; by a prime, we have from (4-2) and
(9-1), H? HK HL
C,=|HK 1+K? KL (9-3)
HL KL 14L7
trC=2+q, trC?=(q+1)2+1—2H"?, detC=H"?, (9-4)
with q=H?+K?+L" (9-5)
Also, from (9-1), (9-2) and (4-2)
B tw 0 -3 —uw
HB; =5 0 0} HR;=|% 0 o (9-6)
w0 0 w0 0
trB=u'[H, trB?=[2u24v24+w?]/(2H"?), detB=0, (9°7)
and from (9-4) and (4-13) p1rH' = p,. (9-8)

From (4-12) and (9-3) the stresses ¢}’ become
oY = ay+ (ayt+agq) H?,

049 = o+ 0y(1 4 K'2) +ay[1+(2-+4) K7, (9-9)
oAy =~ HKy o =HLY, of = KL(x+),
where X = ty+(14q) s, (9-10)

and the formula for d}) is derived from that for ¢§}) by replacing K’ by L’ throughout. The
coefficients ¢; in (9-9) and (9-10) are functions of the invariants (9-4) and p,. Alternatively,
remembering (9-8), they may be regarded as functions of H" and K'24-L"2.
Again, from (4-12) and (9+6) we obtain ‘
OF — B Bott [H + Byt +07 ') (4H), ]
o — B+ fyr Y (4H), o = fyt By (4H"), |
ofy = V' (fH'+fyu’)[(2H'?),  0ff) = w'(f, H' +/)’3u’)/(2H’2),J'
o — v By (4H').
The coefficients f; are functions of p, and the invariants (9-7), that is, of p,, 4'/H’ and
(V"2 4w'?) [H".
The diffusive force components for a hemihedral isotropic material ¥ are given by
(6-3). With the help of (9-3), (6-2) and (9-6) we obtain
Wy = ynu+ QuH (K'v+ L'w) — @, (L' — K'w') [2,

(9-11)

Wy = Yav+K'(Q H'u+Q, L'w) — (@, K'L — g’/ (2H"), (9-12)
Wy = ¢+ L(Q Hu+Q, K'v) — (%33”’“K,L,sz’)/(2H’),
where Vi =¥+ H*y+qH"Ys,
Voo = 1+ (1+K?) Y+ [1+(2+9) K'?] Y, (913)

Q=¥+ (1+q) Vs Q2= Q1 +¥s
¢33 is derived from y,, by replacing K’ by L’ throughout and the barred quantities ¥,
V33 Q1, Q, are derived from the corresponding unbarred quantities by replacing ¥,, ¥, ¥

by ¥4, V5, P> respectively.
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Remembering (9-1) and (9-2), it is seen without difficulty that the stresses and diffusive
force components are all functions of X, or y,. The equations of motion (2-7) therefore

yield dofPfdy,—p, ;=0 (i=1,2,3), (914)

dof/dy, +p,¥; = ppu(dv;/dy,) (i =1,2,3), (9-15)
v; being given by (9-2).

The equation of continuity (2-3) again gives

d(pyu)/dy, =0 or pyu =k (k= constant), (9-16)

and from (9-14) to (9-16) we obtain
o +o = kv +k, (9-17)

k; being further constants of integration.

If the expressions (9-9), (9-11) and (9-12) for o{P, ¢¥ and W, are introduced into (9-14)
and (9:17) and p, and p, are eliminated by means of (9-8) and (9-16), then these relations
may be regarded as six ordinary differential equations for the determination of the quantities
H, K, L, u, v, w describing the deformation and flow.

If the deformation and flow are assumed to take place in the X, X, plane, so that
L(X,) = 0, w(X,) = 0 then from (9-9), (9-11) and (9-12)

Provided v’ = 0, the third equation of (9-14) and of (9-15) can then be satisfied if and only
if ¥4, = 0; this occurs if the solid ¢ has a centre of symmetry. Otherwise, if (9-14) and
(9-15) are not to form an overdetermined system, neither L’ nor w can vanish. We conclude
that, in general, a fluid diffusing through a hemihedral elastic solid in shear is deflected in a
direction normal to the plane of shear; this effect is absent in holohedral materials.

We may observe that even if ] has a centre of symmetry at each point the system of
equations (9-14), (9-15) becomes overdetermined if we assume only one of the variables
L or w to be zero. In general, therefore, a shearing deformation is accompanied by a flow
of fluid in the direction of shear, and conversely, a flow of fluid in a direction tangential to
the X,, X, planes is accompanied by a shearing deformation in that direction.

10. SLOW STEADY FLOW THROUGH A SHEARED SLAB

When the diffusion velocities are sufficiently small, and the deformation of & differs
only slightly from simple shear, an explicit solution of the equations of §9 may be obtained
by the method of § 8. We assume the shear of &, in the absence of & to be a simple shear in
the X,, X, plane and guided by the results of § 8 we replace (9-1) and (9-2) by

g = Xy +eH(X)), yy =X+ KX +eK(X), y5= X3+€Z(X1)9} (10-1)
v, = 6Uy+ 6%, Uy = €U+ 6%, Vg = Ewy+6*W,

In (10-1) ¢is a small parameter independent of X;, K is a constant, H, K, L and the velocities
are functions of X, and terms of higher order in ¢ have been neglected. As in §8, we assume
the densities p,, p, to be given by

p1=C1+EP, Py = Ca6Py, (10-2)

where ¢; and ¢, are constants, and replace & by eky+¢%k in (9-16).
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Equations (9-8) and (9-16) then yield
€1 = Po;  Cally = ko, (10'3)
piteH =0, pyugtcu =k (10-4)

In (9-9) and (9-10) we regard «; as functions of H’, K’ and L'; in (9-11) we regard f; as
functions of p,, 4'/H’ and (v'24w'?)/H’2. Assuming Taylor series expansions in powers of ¢
to be valid, we then have

;= [055]0+6{ﬁ' aH/] +K/ (?K,:l +L’ aL] }+0(€2):

b= Blotea[ 35t ] +0(@),

the symbol [ ], again indicating that the quantities inside brackets are evaluated ate = 0.

The terms independent of ¢ in (9-14) vanish identically, and those independent of ¢ in
(9-17) merely yield relations connecting [¢;], and [f;], with arbitrary constants. From the
terms linear in ¢ we obtain

a, H' +a,K" 4+ a;L" +d, vy +dyw)y = dy,)
a,H' +a5K" +ag L' 4 dyvy+dywy = d,
a; L" +dyvg+dgw, = 0,

aH' +a,K' +-a; L' +b,p, = ki,

a,H' +as K'+agL' +byvy = ky,

a; L' +bywy =y,

(10-5)

) (10-6)

where

0d 0sf 05 ,
(al’aba:’.) = (’a—ﬁl’ K" B—E)’ 4 :061—|—(OC2+0L39)H2,

d i d .
a, = K, {47“"[9%:]0}: a5 = a;+ K, I:;?—KX—']O’ ag = K, I:a—}f,]o, a; =[x (10-7)

by =1[0p1/0polos by = [Balo/2
dy= =, Ko[Q1]oy 2dy = —¢, K[ @]y d5 = cquo[¥11]os
dy= —co[Yanles 245 = —6,[Ppoley ds= —dyup, (10-8)
2d; = 5[ Ysslos dy = —6y[¥3s]os

and the constants £, may be chosen arbitrarily owing to the arbitrary nature of the constants
k;in (9-17).
Solutions of (10-6) may readily be obtained in the form
4

H= 2177 e Xt XE 6 X, 417,
4
K= Z Kk,emr X4 g X2+ ke X, +Kq,
4
L= Z A e XL 0, X+ A, > (10-9)
4
zlg emrX1+d6/d4,
4
= 2 é’remer:
r=1 J
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where the constants 7,, ,, 4,, £,, {, satisfy the equations
a2+ g+ agm, i, dym, , — 0,
aymiy,+asmik,+agmid,+dy, +dym,{, = 0,
a;miA,+dym,E,+dg{, = 0,
ay7,+ a5k, +agh, +by€, = 0,
a7 4,+b, ¢, = 0,

, (10-10)

(r =1 to 4; r not summed),
and for these to be compatible, m, are the roots of
b3m*—{by(d,+dy) +dyd;} m?*+dydy = 0, (10-11)
provided a,a;—a,a, < 0 and a; == 0. The constants 75, k5, A5 in (10-9) are given by
9 5_”5(d3d4_dlf_{§_) i — a5 N _Es

Cdy(aa—aa)’ 0 e’ ey
and ayg+askg = ky—agksfag;
7,5 k7 and Ag, which specify a rigid body displacement may be chosen arbitrarily and since
k,, k5 are arbitrary constants, 7, and g are also arbitrary. The arbitrary constants in (10-9)
are chosen to satisfy the boundary conditions at X; = a;, X; = a,. The density 7, is given by
the fourth equation of (10-6) and %, p, are determined from (10-4).

If the constants 7,, ,, 4,, £,, {, (r = 1 to 4) are chosen to be zero in (10-9) the solution for
p, and the normal flow velocity u resembles that for normal diffusion through an isotropic
rigid plate (Adkins 1963 a). In addition, however, a flow is induced parallel to the direction
of the finite shear, and a small shearing deformation occurs normal to the plane of the finite
shear. We observe that the second-order velocities 9, w must be determined from the next
stage of the approximation process, and terms non-linear in v;, if they occur in the constitutive
equations for the stress and diffusive force, would then need to be taken into account.

The author wishes to thank Professor A. E. Green, F.R.S., for helpful discussions on a

draft of this paper.
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